binary-wz-default
Wurtzite material parameters
More information can be found under the keyword
binary-wz-default (binary wurtzite parameters) under the section
Keywords. 
!-------------------------------------------------------------------! 
$binary-wz-default                                       
 required ! 
 binary-type                               
character      
required ! 
 conduction-bands                          
integer        
required ! total number of conduction bands 
 conduction-band-masses                   
 double_array   required 
! [m0] for each band. Ordering of numbers corresponds to band no. 1, 2, ... 
 conduction-band-degeneracies              
integer_array  required ! including 
spin 
degeneracy 
 conduction-band-nonparabolicities         
double_array   
required ! As used in a 
hyperbolic dispersion k^2 ~ E(1+aE). a = nonparabolicity (1/eV) 
 band-gaps              
                 
 double_array   optional ! 
 conduction-band-energies                 
 double_array   required ! 
conduction band edge energies relative to a reference level (could be vacuum) (numbering according cb 
numbering 
                                                                   
!  
 valence-bands                            
 integer        
required ! total number of valence bands 
 valence-band-masses                      
 double_array   required ! 
[m0] mxx, myy, mzz for each band 
(heavy, light and crystal-field split-off hole). Ordering of numbers corresponds to band 
no. 1, 
2, ... 
 valence-band-degeneracies                 
integer_array  required ! including 
spin 
degeneracy 
 valence-band-nonparabolicities            
double_array   required ! As used in a 
hyperbolic dispersion k^2 ~ E(1+aE). a = nonparabolicity (1/eV) 
 valence-band-energies                     
double         required 
! "average" valence band edge energy Ev (see 
comments below) 
                                                                   
! 
 varshni-parameters                  
       double_array  
required ! alpha [eV/K] 
(Gamma,indirect,indirect), beta [K] 
(Gamma,L,indirect,indirect) 
 band-shift                                
double         
required ! to adjust band alignments (should be zero in database): adds to all 
band energies 
                                                                    ! 
 absolute-deformation-potential-vb         
double         
required ! not used in wurtzite 
 absolute-deformation-potentials-cbs       
double_array   required ! absolute 
deformation potentials of conduction band minima a_c, a_ci's 
                                                                    
! 
  uniax-vb-deformation-potentials           
double_array   required ! b,d 
related [eV] 
 uniax-cb-deformation-potentials          
 double_array   required ! not used in wurtzite 
                                                                   
! 
 lattice-constants                         
double_array   required ! 
[nm] 3 positive 
numbers 
 lattice-constants-temp-coeff        
       double_array  
required ! [nm/K] 
                                                                    
! 
 elastic-constants                         
double_array   
required ! 
 piezo-electric-constants                 
 double_array   
required ! 
 pyro-polarization                         
double_array   
required ! 3 numbers 
                                                                   
! 
 static-dielectric-constants               
double_array   required ! 
 optical-dielectric-constants              
double_array   
required ! 
                                                                   
! 
 6x6kp-parameters                          
double_array   
required ! 
 8x8kp-parameters                         
 double_array   required ! 
                                                                   
! 
 LO-phonon-energy          
                double_array  
 required ! [eV] 
                                                                   
! 
 number-of-minima-of-cband                
 integer_array  required ! 
 conduction-band-minima                    
double_array   required ! 
 principal-axes-cb-masses                 
 double_array   
required ! 
                                                                   
! 
 number-of-minima-of-vband                 
integer_array  required ! 
 valence-band-minima                       
double_array   required ! 
 principal-axes-vb-masses                 
 double_array   required ! 
                                                                   
! 
$end_binary-wz-default                                   
 required ! 
!-------------------------------------------------------------------! 
  
Syntax
binary-type = GaN-wz-default 
conduction-bands = 3 
total number of conduction bands 
conduction-band-masses = 0.202d0 0.202d0 0.206d0 ! 
[m0] masses at the Gamma point m_|_, m_|_, m|| 
(with respect to c-axis) 
                        
0.330d0 0.330d0 1.430d0 ! 
[m0] masses at the indirect ??? point 
                        
0.280d0 0.280d0 2.170d0 ! 
[m0] 
masses at the indirect ??? point 
conduction-band-degeneracies = 2 8 6 
including spin degeneracy 
  
conduction-band-nonparabolicities = 0.6d0 0.2d0 0.3d0 
Nonparabolicity factors for the Gamma, L and X conduction bands as used in a hyperbolic dispersion k2 ~ E (1 +
aE) = E + aE2. 
a = nonparabolicity [1/eV] (usually 
denoted with alpha) 
The energy of the 
Gamma valley is assumed to be nonparabolic, spherical (CHECK: is this also true 
for wurtzite?), and of the form 
hbar2 k2 / (2 m*) = Eparabolic = Enonparabolic (1 + aEnonparabolic) 
where a is given by a = (1 - m*/m0)2 / Eg. 
Eparabolic is the energy of the carriers in the usual 
parabolic band. 
Enonparabolic is the energy of the carriers in the 
nonparabolic band. 
The nonparabolic band factor a can be calculated from the Kane model. 
Note that this nonparabolicity correction only influences the classically 
calculated electron densities. 
Quantum mechanically calculated densities are unaffected. 
  
band-gaps = 1.5d0 2.0d0 2.3d0  ! [eV]  
Note that this flag is optional. It is only used if the flag use-band-gaps 
= yes is used. 
Energy band gaps of the three valleys (Gamma, ?, ?). 
conduction-band-energies = 3.500d0 10.00d0 10.00d0 
conduction band edge energies relative to valence band number 1 (number 
corrsponds to the ordering of the entries below) 
valence-bands = 3 
total number of valence bands 
valence-band-masses       = 0.370d0 0.370d0 2.090d0 ! 
[m0] heavy hole (HH) masses m_|_, m_|_, m|| 
(with respect to c-axis) 
               
           
0.390d0 0.390d0 0.740d0 ! [m0] 
light   hole (LH) masses  m_|_, m_|_, m|| 
(with respect to c-axis) 
                           
0.940d0 0.940d0 0.180d0 ! 
[m0] crystal-field split-hole (CH) masses m_|_, m_|_, 
m|| (with respect to c-axis) 
Ordering of numbers corresponds 
to band no. 1, 2, 3 (heavy, light, crysta-field split-off hole). 
 
valence-band-degeneracies = 2 2 2 
including spin degeneracy 
valence-band-nonparabolicities = 0.0d0 0.0d0 0.0d0 
see comments for conduction-band-nonparabolicities 
  
valence-band-energies = 0.0 
The "average" valence band edge energy is according to Ev in: 
   S.L. Chuang, C.S. Chang 
   k.p method for strained wurtzite semiconductors 
   Phys. Rev. B 54 (4), 2491 (1996) 
The valence band energies for heavy hole (HH), light hole (LH) and 
crystal-field split-hole (CH) are calculated by 
  defining an "average" valence band energy Ev for all three bands and adding the 
  spin-orbit-splitting and crystal-field splitting energies afterwards. 
The crystal-field splitting energy Deltacr and the 
spin-orbit-splitting energies Delta2 = Delta3 = 1/3 Deltaso 
are defined together with the 6-band k.p parameters. 
The "average" valence band energy Ev is defined on an absolute 
energy scale and must take into account the valence band offsets which are "averaged" over the three holes. 
Note: The real average of the three holes is: Ev,av = 
(EHH + ELH + ECH ) / 3 = Ev + 2/3 Deltacr 
  
varshni-parameters = 0.909d-3  0d0  0d0 
 ! 
alpha [eV/K](Gamma, indirect, indirect) Vurgaftman 
                    
830d0     0d0  0d0  ! beta  
[K]   (Gamma, indirect, indirect) Vurgaftman 
Temperature dependent band gaps (here: GaN values).
More 
information... 
  
band-shift = 0d0     
to adjust band alignments (should be zero in database): adds to all band 
energies 
  
absolute-deformation-potential-vb = 0.0d0 
! a_v [eV] -
not used in wurtzite 
Absolute deformation potential of valence bands. 
  
absolute-deformation-potentials-cbs = ac,a (a axis)   ac,a (a axis)  
ac,c (c axis) ! [eV] 
                                    
= -10.0d0      -10.0d0     -5.0d0     ! [eV] 
absolute deformation potentials of Gamma conduction band minima
ac,a=a2 (a axis), 
ac,a=a2 (a axis), ac,c=a1 (c 
axis) 
 
Note that I. Vurgaftman et al., JAP 94, 3675 (2003) lists
a1 and a2 
parameters. 
They refer to the interband deformation potentials, i.e. to the 
deformation of the band gaps. 
Thus we have to add the deformation potentials of the valence bands to get 
the deformation potentials for the conduction band edge. 
ac,a = a2 
= a2 + D2 
ac,c = a1 
= a1 + D1 
  
uniax-vb-deformation-potentials = -3.7d0  
4.5d0  8.2d0 ! D1, D2, D3 [eV] 
                                 
-4.1d0 -4.0d0 -5.5d0 ! D4, D5, D6 [eV] 
Uniaxial deformation potentials of valence bands. 
  
uniax-cb-deformation-potentials  = 0d0     
0d0     0d0  ! not used in wurtzite 
Uniaxial deformation potentials of conduction bands. 
Xi_u (at minimum) 
  
  
lattice-constants            = 
0.3189d0  0.3189d0  0.5185d0  
! [nm]   300 K 
                             
= a        a        
c 
3 positive numbers 
For the ideal c/a ration it holds: c/a = SQRT(8/3) = 1.63299... 
lattice-constants-temp-coeff = 3.88d-6  
3.88d-6  3.88d-6     ! [nm/K] 
More 
information on temperature dependent lattice constants... 
  
elastic-constants = 374.0d0 106.0d0 70.0d0         
! C11,C12,C13 
                   
379.0d0 101.0d0                
! C33,C44 
Elastic constants C11,C12,C13,C33,C44 in [GPa] with their usual 
meaning. 
(C66 is not needed as it can be calculated. C66 = 0.5 * (C11 
- C12).) 
  
piezo-electric-constants  = 0.73d0 -0.49d0 -0.30d0          
! [C/m^2] e33  e31   e15                          
(1st   order coefficients) 
                           
0d0 0d0 0d0 0d0 0d0 0d0 0d0 0d0  ! [C/m^2] B311  
B312  B313  B333  B115  
B125 B135  B344
(2nd order coefficients) 
Conventionally, the sign of the piezoelectric tensor components is fixed 
by assuming that the positive direction along the 
- [111] direction (zincblende) 
- [0001] direction (wurtzite) 
goes from the cation to the anion. 
pyro-polarization        = 0d0       0d0      -0.029d0  
! [C/m^2] 0d0  0d0  Psp 
  
static-dielectric-constants = 9.28d0 9.28d0 
10.01d0 
                              eps1   eps2
  eps3 
Static dielectric constants. The numbers 
correspond to the crystal directions (similar to lattice-constants): 
- in zinc blende: eps1 = eps2 
= eps3 
- in wurtzite:     eps1 =
eps2   eps3 
              eps3 
is parallel to the c direction in wurtzite. 
             
eps1 and eps2  are perpendicular to the c direction in wurtzite. 
low frequency dielectric constant 
epsilon(0) 
optical-dielectric-constants = 5.35d0  5.35d0  5.35d0  ! high frequency dielectric constant
epsilon(infinity); perpendicular and parallel to c axis 
  
6x6kp-parameters = -7.21d0  -0.44d0     6.68d0     
! 6-band k.p Rashba-Sheka-Pikus 
parameters 
                   
-3.46d0  -3.40d0    -4.90d0     ! 6-band k.p Rashba-Sheka-Pikus parameters 
                   
0.010d0  0.00567d0  0.00567d0  ! Delta1   Delta2   Delta3       
[eV] 
8x8kp-parameters = -7.21d0  -0.44d0     6.68d0     
! 8-band k.p Rashba-Sheka-Pikus 
parameters 
                   
-3.46d0  -3.40d0    -4.90d0     ! 
8-band k.p Rashba-Sheka-Pikus parameters 
                   
0d0      0d0        0d0        
! B1   B2  B3  [hbar2/(2m0)] 
                    
14.5d0   14.5d0                
! EP1  EP2      [eV] 
                    
1d0      1d0                   
! S1   S2      [] 
 
Note: The S
parameters are also defined in the literature as F
where S = 1 + 2F, e.g. I. Vurgaftman et al., JAP 89, 
5815 (2001). 
  
LO-phonon-energy = 0.09212d0 0.09212d0 0.09113d0   
! [eV] low-temperature optical phonon energy (perpendicular, 
perpendicular, parallel to c axis) 
  
number-of-minima-of-cband = 1 4 3 
conduction-band-minima = 0d0     
0d0     0d0 
 
                        
0.860d0 0.860d0  0.860d0 
                        
0.860d0 0.860d0 -0.860d0 
                       
-0.860d0 0.860d0  0.860d0 
                       
-0.860d0 0.860d0 -0.860d0 
 
                        
0d0     0d0     
1d0     
                        
1d0     0d0     0d0     
                         
0d0     1d0     0d0     
components of k-vector along crystal 
xyz [k0] 
principal-axes-cb-masses = 1d0     
0d0     0d0 
                           
0d0     1d0     0d0 
                           
0d0     0d0     1d0 
                          
!c 
                          
1d0    -1d0     
0d0      ! L1 
                          
1d0     1d0    
-2d0 
                          
1d0     1d0     1d0 
                          
1d0    -1d0     0d0      ! L2 
                         
-1d0    -1d0    -2d0 
                          
1d0     1d0    -1d0 
                          
1d0     1d0     0d0      ! L3 
                         
-1d0     1d0    
-2d0 
                         
-1d0     1d0     1d0 
                          
1d0     1d0     0d0      ! L4 
                          
1d0    -1d0    -2d0 
                         
-1d0     1d0    -1d0 
                          
!c 
                          
1d0     0d0     
0d0      ! X1 
                          
0d0     1d0     
0d0 
                           
0d0     0d0     1d0 
                          
0d0    -1d0     0d0      ! X2 
                          
0d0     0d0    
-1d0 
                          
1d0     0d0     0d0 
                          
1d0     0d0     0d0    
 ! X3 
                          
0d0     0d0    
-1d0 
                           
0d0     1d0     0d0 
Normalization will be done internally by the 
program 
number-of-minima-of-vband = 1 1 1 
valence-band-minima = 0d0     
0d0     0d0 
                     
0d0     0d0     0d0 
                     
0d0     0d0     0d0 
components of k-vector along crystal xyz 
[k0] 
principal-axes-vb-masses = 1d0     
0d0     0d0 
                           
0d0     1d0     0d0 
                           
0d0     0d0     1d0 
 
                          
1d0     0d0     0d0 
                           
0d0     1d0     0d0 
                           
0d0     0d0     1d0 
 
                          
1d0     0d0     0d0 
                           
0d0     1d0     0d0 
                           
0d0     0d0     1d0 
Normalization will be done internally by the program 
More information can be found under the keyword
binary-wz-default 
(binary wurtzite parameters) under the section
Keywords. 
 |