| 
    
 |  | 
Electric field
  - 1D: Electric field must be oriented parallel to simulation axis.
 
  - 2D: Electric field must be oriented in plane of simulation area.
 
  - 3D: arbitrary
 
 
  
!----------------------------------------------------------------------! 
$electric-field                                               
optional ! 
 electric-field-on                   
          character      required ! 
 electric-field-strength       
                double         required ! 
 electric-field-strength-from-applied-voltage  
character      optional ! 
1D only 
 electric-field-direction        
              integer_array  required ! 
                                                                       
! 
 electric-field-sweep-active                   
character      optional ! (optional, only needed for electric field sweep) 
 electric-field-sweep-step-size               
double         
optional ! (optional, only needed for 
electric field sweep) 
 electric-field-sweep-number-of-steps          integer       
optional ! (optional, only needed for 
electric field sweep) 
$end_electric-field                                           optional ! 
!----------------------------------------------------------------------! 
  
Syntax
!---------------------------------------------------------------! 
$electric-field                                                 ! 
 electric-field-on                    = 
yes                     ! yes/no 
 electric-field-strength              = 7.0d5                   
!  [V/m], i.e. in this case 7.0 * 105 V/m 
 electric-field-direction             = 1 0 0                   ! 
                                                                
! 
 electric-field-sweep-active          = 
yes                     
! yes/no 
 electric-field-sweep-step-size       =
0.5d5                   ! 
[V/m], i.e. in this case 0.5 * 105 V/m 
 electric-field-sweep-number-of-steps = 10
                     
!  number of electric field sweep steps 
 $end_electric-field                                             ! 
!---------------------------------------------------------------! 
Note: The origin of the electric field is 
chosen automatically to be the center of the structure. This makes it possible 
to compare energies by varying the applied electric field as shown in the 
Tutorial "Quantum Confined Stark 
Effect".
electric-field-strength =
7.0d5    !  [V/m], i.e. in this case 7.0 * 105 V/m
	The units are [V/m]: 1 kV/cm = 1 * 105 V/m 
= 1d5 V/m
	  
 
electric-field-direction = 1 0 0
	The direction of the electric field 
	vector is with respect to the
	
	simulation coordinate system, i.e. 1 0 0 
	means along x direction [100], 0 0 1 
	along the z direction [001].
 
  
Additional option for 1D simulation
If one has two contacts at the left and right device boundaries, 
one can calculate the electric field from the difference of the two applied 
voltages (assuming a linear potential drop). 
This can be combined with a voltage sweep ($voltage-sweep). 
In that case, the electric field is calculated automatically, and thus the value 
of electric-field-strength will be ignored. 
!---------------------------------------------------------------! 
$electric-field                                                 ! 
 electric-field-on                            = 
yes             ! yes 
 electric-field-strength                      =
0d0             
!  [V/m] will be ignored in this case 
 electric-field-strength-from-applied-voltage 
= 
yes             ! 
1D only 
 electric-field-direction                     = 1 0 0           ! 
$end_electric-field                                             ! 
!---------------------------------------------------------------! 
This feature electric-field-strength-from-applied-voltage 
only works if 
  'applied-voltage  = 0.0 V' at the left contact and 
  'applied-voltage /= 0.0 V' at the right contact. 
If 'applied-voltage /= 0.0 V' at left contact and 
  'applied-voltage  = 0.0 V' at the right contact, 
then the sign of the electric field has to be reversed. 
If none of the contacts is zero, then the electric field is not calculated 
correctly. 
  
  
Electric field sweep
It is possible to sweep over the electric field strength, i.e. to vary the 
strength of the electric field stepwise. This is similar to magnetic field 
sweeps ($magnetic-field), voltage 
sweeps ($voltage-sweep) and doping 
concentration sweeps ($doping-function). 
The output is labeled with ..._ind000.dat, ..._ind001.dat, 
..._ind002.dat, ... where the index refers to the number of the 
electric field sweep step. 
The output for the eigenvalues as a function of applied electric field can be 
found here: 
   Schroedinger_1band / electric_ev1D_cb001_qc001_sg001_deg001_dir_Kx001_Ky001_Kz001.dat. 
In this particular example, the Gamma conduction band edge electron energies ('cb001') 
that have been obtained with the one-dimensional ('1D') single-band 
('sg') Schrödinger equation with Dirichlet ('dir') 
boundary conditions have been written out as a function of electric field. 
 
The first column contains the strength of the electric field in units of 
[kV/cm]. 
The second column contains the 1st  eigenvalue for the specified 
electric field in units of [eV], 
the third      column contains the 2nd 
eigenvalue for the specified electric field in units of [eV], ... 
 
For details, please have a look into the
Quantum Confined Stark Effect 
(QCSE) tutorial. 
  
Restrictions:
  - Can only be used in connection with
 
   
 flow-scheme =
  20 and 
         
  1. Calculate electrostatic potential. 
           
  2. Apply electric field. 
           
  3. Calculate eigenstates. 
    
 flow-scheme =
  21 so far. 
         
  1. Do not calculate electrostatic potential. 
           
  2. Apply electric field. 
           
  3. Calculate eigenstates. 
  
  - Electric field direction so far refers to x, y or z-coordinate axis (and 
  not to Miller indices), i.e.
 
  1D: only possible: 1 0 0     
  or   0 1 0     
  or   0 0 1 
  2D: only possible: 1 0 0     
  or   0 1 0     
  or   0 0 1  
  3D: only possible: 1 0 0     
  or   0 1 0     
  or   0 0 1  
  - Outlook: The following should be implemented in the future:
 
  Arbitrary electric field orientation in 3D: e.g. 3 
  1 1 
  Arbitrary electric field orientation in 2D: e.g. 0 
  1 1 
  (1D restriction: Electric field must still be oriented parallel to simulation 
  axis. 
 2D restriction: Electric field must still be oriented in plane of 
  simulation area.) 
 
 |