| 
    
 |  | 
interface-states
To specify additional charges at material interfaces, one has to specify 
- material interfaces 
- interface state properties. 
See also documentation under keyword 
$material-interfaces. 
!-------------------------------------------------------------! 
$interface-states                                   
optional  ! 
 state-number                      
integer         
required  ! 
 state-type                        
character       required  ! 
fixed-charge, trap, electrolyte, 
k.p 
 interface-density                 
double         
required  ! 
 number-of-energy-levels           
integer         optional  ! for trap 
 energy-levels-relative            
double_array    
optional  ! for trap 
 degeneracy-of-energy-levels       
integer_array   
optional  ! for trap 
 transition-times-cb-to-levels     
double_array    
optional  ! for trap 
 transition-times-levels-to-vb     
double_array    
optional  ! for trap 
                                                              
! 
 number-of-parameters               
integer         optional  ! 
 parameters                         
double_array    optional  ! 
  
 adsorption-constant                
double          
optional  ! for 
electrolyte 
 dissociation-constant              
double          
optional  ! for 
electrolyte 
                                                              
! 
 pressure                           
double          optional  !
for gas 
 surface-phonon-frequencies         double_array    optional  ! for gas (1st = weakly, 2nd 
= strongly chemisorbed surface state) 
 accomodation-coefficients          double_array    optional  ! for gas (1st = weakly, 2nd 
= strongly chemisorbed surface state) 
 energy-levels-chemisorbed-states   double_array    
optional  ! for gas (1st = weakly, 2nd 
= strongly chemisorbed surface state) 
 free-molecule-energy               
double          optional  ! 
for gas 
 molecule-mass                      
double          optional  ! for gas 
                                                              
! 
$end_interface-states                               optional 
! 
!-------------------------------------------------------------! 
  
Syntax
state-number                  =
1 
                              =
2 
                              =
integer 
Refers to state-numbers specified in 
$material-interfaces. 
  
state-type                    =
fixed-charge 
                              =
trap           
! The trap model is not fully tested yet. We don't have any tutorials for 
it. 
                              
=
electrolyte 
                              
= gas 
  
  fixed-charge 
   
  interface-density         = 
  -2.2d13   ! -2.2 x 1013
[|e|/cm2] 
interface density of 
fixed-charge 
in units of [e/cm2] 
  
  trap 
   
  interface-density        
  = 1.0d15    ! 1.0 x 1015
[1/cm2] 
interface density of impurity type in units of [1/cm2] 
   
  number-of-energy-levels   =
1 
  number of energy levels of this impurity 
   
  energy-levels-relative    = 
0.3d0 !
in units of [eV]
(can be an array of energy levels) 
energy levels in [eV] relative to 'nearest' 
band edge (n-type -> conduction band, else valence band) 
   
  degeneracy-of-energy-levels = 
2 !
 for donors 
                            = 4 ! for acceptors 
                               
 !
can be an array of degeneracies (one for each energy level) 
degeneracy of energy levels 
   
  transition-times-cb-to-levels = 
 ! can be an array of transition times 
required in case of 
trap: times from conduction band to discrete 
levels 
   
  transition-times-levels-to-vb = 
 ! can be an array of transition times 
required in case of 
trap: times from discrete levels to valence 
bands 
   
  Not included yet: 
- relevant_bandedgeV = 1: Ionization energy relative to band edge 
of left octant 
- relevant_bandedgeV = 2: Ionization energy relative to band edge 
of right octant 
  
  electrolyte 
   
  Definition of electrolyte: An aqueous solution containing dissolved 
ions that result from the dissociation of salts. 
  The surface ionization that occurs at the oxide/electrolyte interface yields 
  an interfacial sheet charge density. 
  (Note: The pH value is specified in the keyword
	$electrolyte.) 
   
  There are two ways how the electrolyte influences the calculations: 
  - oxide/electrolyte interface states:             
  $interface-states 
  - Poisson-Boltzmann equation in electrolyte region:
  $electrolyte 
                                     
	$electrolyte-ion-content 
   
  
  !--------------------------------------------------------------------! 
  ! Ga(x)O(y) behaves similarly to Al2O3 surface: 8.0d14 = Al2O3 value ! 
  !--------------------------------------------------------------------! 
  ! Amphoteric surface 
  !--------------------------------------------------------------------! 
  ! S: oxide molecular site with a bonded hydroxyl group OH 
  ! 
  ! Two surface reactions: 
  !  SOH_2^+ <=> SOH  + H^+ : dissociation constant K_1 = 
  adsorption-constant 
  !  SOH     <=> SO^- + H^+ : dissociation constant K_2 
  = dissociation-constant 
  ! 
  ! SOH    : neutral 
  ! SOH_2^+: positive 
  ! SO^-   : negative 
  ! 
  ! total density of surface sites = total number of surface sites per unit area 
  = n_s 
  ! n_s = nu_'SOH' + nu_'SOH_2^+' + nu_'SO^-' 
  !--------------------------------------------------------------------! 
   
  Electrolyte: Site-binding model (interface charges) 
    => semiconductor/electrolyte or oxide/electrolyte interface 
    => Amphoteric behavior of surface: Adsorption or 
  dissociation of hydrogen ions at hydroxyl (OH) groups. 
            These two 
  reactions are characterized by two dissociation constants K1 and K2. 
  
       Adsorption and dissociation at this interface leads to an interface charge. 
   
    
   
   
  interface-density        
  = 8.0d14   ! 8.0 x 1014
  [1/cm2]
 interface density of surface 
  sites Ns in units of [1/cm2]
 total density of surface sites, e.g. 'surface hydroxyl groups' 
  (S-OH)
 
  
  adsorption-constant       =
  1.0d-8  ! K1 = adsorption   
  constant dissociation-constant     = 
  1.0d-6  
  ! K2 = dissociation constant
 These refer to the chemical reactions at the surface of the 
semiconductor (or oxide) that are due to the presence of the electrolyte. These constants 
  are material parameters of the semiconductor (or oxide). In units of [-]. 
  
  
  More information on the electrolyte liquid and the Poisson-Boltzmann equation:
  $electrolyte 
                                                         
	$electrolyte-ion-content 
	 
	 
	The following figure shows the relation of the oxide/electrolyte interface 
charge density sigmaadsorbed divided by the maximum possible 
oxide/electrolyte interface charge density e Ns for different pH 
values. Here, the electrostatic potential is taken to be fixed at phi = 0 V. The 
model used here applies to amphoteric surfaces. For details confer Fig. 2.2.3 
and the related description in the diploma 
thesis of Michael Bayer, TU Munich (2004).
  
The figure shows the results for two different combinations of absorption and 
dissociation constants. 
   adsorption-constant   = 1d-6    
! K1 = adsorption   
  constant 
   dissociation-constant = 1d-8    ! K2 = dissociation constant 
 
   adsorption-constant   = 1d-3    
! K1 = adsorption   
  constant 
   dissociation-constant = 1d-9    
! K2 = dissociation constant 
The following figure shows the relation of the oxide/electrolyte interface 
charge density sigmaadsorbed divided by the maximum possible 
oxide/electrolyte interface charge density e Ns for different 
oxide/electrolyte interface potential 
values. Here, the pH value is taken to be fixed at pH = 8. The 
model used here applies to amphoteric surfaces. For details confer Fig. 2.2.4 
and the related description in the diploma 
thesis of Michael Bayer, TU Munich (2004). 
  
To create this figure, we applied flow-scheme = 
31. 
  
	- k.p interface Hamiltonian
 
 
 
!---------------------------------------------------------------------------! 
$material-interfaces 
 interface-number               
= 1 
 apply-between-material-numbers = 1 2 
 state-numbers                  
= 1    ! refers to $interface-states  
state-number = 1 
 
 interface-number               
= 2 
 apply-between-material-numbers = 2 3 
 state-numbers                  
= 2    ! refers to $interface-states  
state-number = 1 
$end_material-interfaces 
!---------------------------------------------------------------------------! 
 
!++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
!                                  
pi_i  D_S    D_X   D_Z    alpha  
beta1 
! 
! ## ==> a) Switch on  k.p interface Hamiltonian 
  %InterfaceParameters_InAs_GaSb = +1.0  -1.70  
1.17  -1.17  0.2    0.2     
! [eV Angstrom] / [Angstrom] [Livneh2014] 
  %InterfaceParameters_GaSb_InAs = -1.0  -1.70  
1.17  -1.17  0.2    0.2     ! [eV 
Angstrom] / [Angstrom] [Livneh2014] 
! 
! ## ==> b) Switch off k.p interface Hamiltonian 
! %InterfaceParameters_InAs_GaSb =  0.0   
0.0   0.0    0.0   0.0    0.0
    ! [eV Angstrom] / [Angstrom] 
! %InterfaceParameters_GaSb_InAs =  0.0   
0.0   0.0    0.0   0.0    0.0     
! [eV Angstrom] / [Angstrom] 
!++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
  
!---------------------------------------------------------------------------! 
! Add k.p interface Hamiltonian, see eq. (2) in 
! [Livneh2012] Y. Livneh et al., Physical Review B 86, 235311 (2012). 
! [Livneh2014] Y. Livneh et al., Physical Review B 90, 039903(E) (2014). 
! pi_i = +1 (  normal interface, i.e. GaSb on InAs interface) or 
! pi_i = -1 (inverted interface, i.e. InAs on GaSb) 
!---------------------------------------------------------------------------! 
$interface-states 
 state-number         =
1                                                   
! InAs/GaSb: pi_i = +1 
 state-type           =
k.p 
 interface-density    = 0.0                                                 
! 
 number-of-parameters = 6  
                      
! pi_i  D_S    D_X   D_Z    alpha  
beta 
!parameters           =
+1.0  -1.70  1.17  -1.17  0.2    
0.2                
! [eV Angstrom] / [Angstrom] [Livneh2014] 
!parameters           = 
0.0   0.0   0.0    0.0   
0.0    0.0                
! [eV Angstrom] / [Angstrom] (switched off) 
 parameters           = %InterfaceParameters_InAs_GaSb 
! 
 state-number         =
2                                                   
! GaSb/InSb: pi_i = -1 
 state-type           =
k.p 
 interface-density    = 0.0                                                 
! 
 number-of-parameters = 6 
                      
! pi_i  D_S    D_X    D_Z   alpha  
beta 
!parameters           =
-1.0  -1.70  1.17  -1.17  0.2    
0.2                
! [eV Angstrom] / [Angstrom] [Livneh2014] 
!parameters           = 
0.0   0.0   0.0    0.0   
0.0    0.0                
! [eV Angstrom] / [Angstrom] (switched off) 
 parameters           = %InterfaceParameters_GaSb_InAs 
$end_interface-states ! 
!---------------------------------------------------------------------------! 
! Additional comment: 
! If %DebugLevel >= 3, information on k.p interface 
parameters is written to .log file. 
! If %DebugLevel >= 200, the k.p Hamiltonian matrix 
is written out into the debug/ folder. 
! Note: For schroedinger-kp-discretization = 
box-integration     the imaginary part of the k.p 
Hamiltonian is    zero at k_parallel = 0. 
!                                           
box-integration-XYZ the imaginary part of the k.p 
Hamiltonian is nonzero at k_parallel = 0. 
 
 The source code looks as follows: 
 !------------------------------------------------------------------------ 
 ! Add interface Hamiltonian, see eq. (2) in 
 ! [Livneh2012] Y. Livneh et al., Physical Review B 86, 235311 (2012). 
 ! [Livneh2014] Y. Livneh et al., Physical Review B 90, 039903(E) (2014). 
 ! 
 ! ==> To DO: GENERATE INPUT FILE THAT REPRODUCES FIG. 4 IN [Livneh2012]. 
<== 
 ! 
 !------------------------------------------------------------------------ 
 IF (kp_InterfaceL) THEN 
     Ham_const%matM(1,1) = Ham_const%matM(1,1) + D_S 
     Ham_const%matM(2,2) = Ham_const%matM(2,2) + D_S 
     Ham_const%matM(3,3) = Ham_const%matM(3,3) + D_X 
     Ham_const%matM(4,4) = Ham_const%matM(4,4) + D_X 
     Ham_const%matM(5,5) = Ham_const%matM(5,5) + D_Z 
     Ham_const%matM(6,6) = Ham_const%matM(6,6) + D_X 
     Ham_const%matM(7,7) = Ham_const%matM(7,7) + D_X 
     Ham_const%matM(8,8) = Ham_const%matM(8,8) + D_Z 
 
     Ham_const%matM(3,4) = Ham_const%matM(3,4) + pi_i * 
alpha 
     Ham_const%matM(4,3) = Ham_const%matM(4,3) + pi_i * 
alpha 
     Ham_const%matM(6,7) = Ham_const%matM(6,7) + pi_i * 
alpha 
     Ham_const%matM(7,6) = Ham_const%matM(7,6) + pi_i * 
alpha 
 
     Ham_const%matM(1,5) = Ham_const%matM(1,5) + pi_i * beta 
     Ham_const%matM(5,1) = Ham_const%matM(5,1) + pi_i * beta 
     Ham_const%matM(2,8) = Ham_const%matM(2,8) + pi_i * beta 
     Ham_const%matM(8,2) = Ham_const%matM(8,2) + pi_i * beta 
 END IF 
  
	gas: 
	 
	The gas model is based on the so-called Wolkenstein model (Volkenstein) 
	which is a charge transfer model (and which is an improvement with respect 
	to S.R. Morrison's classical "charge transfer model"). 
	It consists of a weakly and a strongly chemisorbed surface state. 
	Related terms: Electroadsorptive effect, Wolkenstein isotherm 
	 
	For more information on this topic, see for instance: 
	 
	- Advanced Gas Sensing: The Electroadsorptive Effect and 
	Related Techniques 
	  T. Doll (Ed.) 
	  Kluwer Academic Publishers, Boston, 2003, ISBN 
	1-4020-7433-6  
	 
	- Chemisorption effects on the thin-film conductivity 
	  H. Geistlinger 
  Surface Science 277, 429 (1992) 
	 
	
 !interface-density                =
	0d0             
	! no gas-interface model  interface-density                =
	1d12            
	! [cm-2] total density of surface 
	sites
 
  !pressure                         =
	50d0          
	 ! [Pa]  50  Pa = 50  
	N/m2
	(low  O2)  pressure                         =
	20d3            !
	[Pa]  
	20 kPa = 20 kN/m2 (high O2) 
	
   surface-phonon-frequencies       =
	1d13   
	1d13    
	! [Hz] v0, v-   1 * 1013 Hz = 1 
	* 1013 1/s                                                     
	! (1st = weakly, 2nd = strongly chemisorbed 
	surface state)                                                    
	! vibration frequency of the adsorbed particle (typical value: ~1013 
	Hz)
  
	  accomodation-coefficients        =
	1d0 
	    1d0     ! 
	[] alpha0, alpha- 
	                                                    
	! (1st = weakly, 2nd = strongly chemisorbed 
	surface state)                                                    
	! alpha = accomodation coefficient
  
	 
	 energy-levels-chemisorbed-states = 
	-3.80d0 -7.90d0 ! 
	Ea0, 
	Ea-  [eV]                                                     
	! (1st = weakly, 2nd = strongly chemisorbed 
	surface state)
  
	  free-molecule-energy             
	= -3.60d0         ! 
	[eV] (Comment: Is this property related to 
	electron affinity?)
 
   molecule-mass                    
	= 31.9988d0       ! 
	[u]                                                     
	! oxygen atom       O : mass of an atom     
	=      15.9994 u                                                     
	! oxygen molecule O2: mass of a molecule = 2 * 15.9994 u = 
	31.9988 u 
	                                                    
	! 1 [u] = 1 / NA [g] = 1 / (1000 * NA) [kg], 
	where NA is 
	Avogadro's number. 
  
 
 |